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Abstract-This work studied, both theoretically and experimentally, the inclined wall plumes which arise 
from a line thermal source imbedded at the leading edge of an adiabatic plate with arbitrary tilt angle 
between 0 and n/2. An appropriate formulation and a very effective numerical scheme are developed to 
obtain rigorous numerical solutions over the full range of tilt angle from the horizontal to the vertical for 
fluids of any Prandtl number between 0.001 and 1000. The effects of the tilt angle on the velocity and 
temperature profiles are presented. A simple, but very accurate, correlation equation is proposed for 
predicting the wall temperature of the inclined plate over the whole range of tilt angle for 0.00 1 6 Pr < 1000. 

The temperature fields of air over the inclined plates have been visualized by using holographic inter- 
ferometry. The photographs of interferograms confirm the physical reality of the horizontal and the inclined 

wall plumes. Copyright 0 1996 Elsevier Science Ltd. 

1. INTRODUCTION 

In an analysis of buoyancy induced laminar flows 
adjacent to horizontal surfaces with power-law vari- 
ations of wall temperature, i.e. T,- T, = NY, Blanc 
and Gebhart [l] obtained similarity boundary-layer 
equations with the exponent constant n limited by 
- l/2 6 n ,< 2 for physical reality. The case of the 
lower limit of n = - l/2 is equivalent to a buoyant 
wall plume along an adiabatic horizontal plate. In a 
similarity analysis of mixed convection flow over a 
horizontal plate, Schneider [2] has mentioned a par- 
ticular case of no heat transfer at the wall except in 
the singular point at the leading edge. It is indeed the 
case of a horizontal wall plume. This kind of plume 
has rarely been investigated. On the other hand, a 
vertical wall plume arising from a line thermal source 
imbedded at the leading edge of an adiabatic vertical 
plate has been studied extensively [3-l 11. 

In most practical situations the plate is usually 
inclined rather than exactly vertical or horizontal. 
However, in contrast to the extensive experimental 
and theoretical investigations on free convection heat 
transfer from heated inclined plates, there seems to be 
no prior analysis on a buoyancy-induced wall plume 
along an adiabatic inclined plate. This has motivated 
the present study. 

In this paper, we analyze the inclined wall plumes 
adjacent to an adiabatic plate with tilt angle between 
0 and 42. By introducing proper dimensionless vari- 
ables, we are able to obtain a set of nonsimilar equa- 

tions which provides very accurate solutions for arbi- 
trary plate inclination from the horizontal to the 
vertical and for fluids of any Prandtl number between 
0.001 and 1000. Moreover, the nonsimilar equations 
are readily reducible to the self-similar equations of 
the vertical and the horizontal wall plumes. 

To solve the set of nonsimilar plume equations sub- 
ject to an integral constraint equation of flux-con- 
servation condition, we develop a very effective 
numerical scheme. The proposed numerical procedure 
can be applied to the analyses of other plumes. 

Usually, one would expect a plume rises upward 
from a line heat source rather than develops along the 
surface of a horizontal plate as a boundary-layer flow. 
However, the presence of a semi-infinite plate restricts 
the entrainment flow on one side of the plume. Conse- 
quently, the plume would lie on the plate surface by 
the buoyancy-induced longitudinal pressure gradient. 
In order to convince one of the physical reality of a 
horizontal wall plume and the inclined wall plumes of 
large tilt angle, we carried out an experiment to vis- 
ualize the horizontal and the inclined wall plumes by 
using holographic interferometry. 

2. ANALYSIS 

In this study we consider a buoyancy-induced wall 
plume along an inclined adiabatic plate, which arises 
from a line heat source imbedded at the leading edge 
of the plate. The physical model and coordinate sys- 
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NOMENCLATURE 

c constant X coordinate along the plate [m] 
CP specific heat [J kg-’ K -‘I Y coordinate normal to the plate [ml. 
f dimensionless stream function, Y/cc[ 
9 gravitational acceleration [m ss’] 
k thermal conductivity [J ss’ m-’ K-i] Greek symbols 
K Gladstone-Dale constant [m’ kg-‘] thermal diffusivity, k/pc, [m’ s-r] 
L length of line thermal source [m] ; thermal expansion coefficient [K -‘I 
m constant i (oRa cos ‘p)‘15 + (CT&Z sin (p)‘16 
M molecular weight [kg mol ‘1 r pseudo-similarity variable, (Y/x)( 
n constant (9 dimensionless temperature, 
N numbers of the bright fringes of (T-TAUT* 

interferograms A wavelength [m] 
P dynamic pressure [N mm’] p dynamic viscosity [kg m-’ SC’] 
P atmospheric pressure [atm] V kinematic viscosity [m’ so ‘1 
Pr Prandtl number, V/E 5 [ 1 + (aRa sin ~)“~/(aRa cos cp)“‘] ~’ 
e rate of heat released from the line P density of fluid [kg m-‘1 

source [J SC’] fs Pr/( 1 + Pr) 
R ideal gas constant [atm m3 mol-’ K-‘1 L wall shear stress, ~L(~u/c~Y)~=~ 
Ra Rayleigh number, gT*x3/crv [kg m -’ s-*1 
T fluid temperature [K] V tilt angle measured from the vertical 
TW wall temperature [K] [degree] 
L temperature of ambient fluid [K] Y stream function [m’ s-‘I. 
T* equivalent temperature of the line 

source, Q/(Pc&) WI 
li velocity component in the x-direction Subscripts 

[m ss’] i ith iteration 
V velocity component in the Y-direction W at the wall 

[m s-‘1 co far from the wall. 

tern are shown in Fig. 1. The flat plate is inclined with 
an arbitrary tilt angle cp to the vertical from 0 to n/2, 

au+!!=0 
ax ay (1) 

including the vertical and the horizontal orientations. 
On the basis of boundary-layer and Boussinesq lap * 
approximations, the governing equations of the .;+A ---+vti+g/.I(T-T,)coscp 

aY P ax ay2 
inclined wall plume can be written as 

0 = -k$ +g/?(T-Tm) sincp 

(2) 

(3) 

Line source 
Fig. 1. Physical model and coordinate system. 

aT aT a*T 
ugy&=r(?t,Z. 

The boundary conditions are 

u = 0, v = 0, aTjay= aty=o; 

u=O, p=O, T=T, asy+co. 

(4) 

(5) 

(6) 

In addition to the boundary conditions, the gov- 
erning equations are also subject to a constraint of 
energy conservation. That is, the total energy con- 
vected by the boundary-layer flow through the per- 
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pendicular plane at any x > 0 must be equal to the 
energy Q released from the line thermal source : 

s 

cc 
PC& u( T- T,) dv = Q. (7) 

0 

To facilitate the analysis of the wall plume on a plate 
with arbitrary inclination from the vertical to the hori- 
zontal, we propose a dimensionless group 

5 = 1 + (ahsln v)“6 
[ 1 

-’ 
(aRacosrp)“5 

(8) 

where 

Q = Pr/(l +Pr) (9) 

and the local Rayleigh number Ra is defined as 

Ra = g/IT*x3/t(v (10) 

with the equivalent temperature T* given by 

T* = Q/(pc,ctL). (11) 

The variable 5 describes the relative strength of the 
longitudinal to the transverse components of buoyant 
force acting on the boundary-layer flow adjacent to 
the inclined plate. It is also a parameter that represents 
the degree of inclination. For the limiting case of a 
vertical plate, q = 0, consequently, 5 = 1. While for 
the other limiting case of a horizontal plate, cp = n/2, 
and thus 5 = 0. The dimensionless variable 5 can also 
be regarded as a stretched longitudinal coordinate. 

In addition, a pseudo-similarity variable is defined 
as 

where 

? = (Y/XX (12) 

[ = (rrRaco~cp)“~+(aRasincp)“~ 

= (crRacoscp)‘,5/[ 

= (aRasinrp)“‘/(l-5). (13) 

Furthermore, a dimensionless stream function, a 
dimensionless dynamic pressure, and a dimensionless 
temperature are defined, respectively, as follows : 

A59 4 = W~YMi (14) 

w(5, r) = (Px2/&)/i4 (15) 

&5> V) = [(T- TcJPY (16) 
where $(x, y) is the stream function that satisfies the 
continuity equation (1). 

By substituting the independent variables 5, rl and 
the dimensionless dependent variablesf, w and f3 into 
equations (l)-(7), we obtain 

Prf”’ + kb&_ fr:f 

0’ =(1+Pr)(l-t)60 (18) 

.f(ir,O) = 0, f’(5,O) = 0, @(LO) = 0 (20) 

f’(5, co) = 0, 45, co) = 0, e(t, co) = 0 

(21) 

and 

s 
=f’t?dn= 1 
0 

(22) 

where the primes denote differentiation with respect 
to ?/. 

For the limiting case of a horizontal wall plume, 
5 = 0, equations (17)-(19) are readily reduced to the 
following self-similar equations : 

Pr~+~ff”+~(l+Pr)$ = 0 (23) 

,,, +;(fe)~ = 0 (24) 

while for the other limiting case of a vertical wall 
plume, 5 ??= 1 and w = 0. Therefore, equations (17)- 
( 19) become 

Prf”‘+iff”-ff’f’+(l+Pr)O = 0 

0” + ;(fey = 0. 

(25) 

(26) 

3. NUMERICAL METHOD 

In this section, an effective finite-difference pro- 
cedure is developed to solve the nonsimilar equations 
(17)-(19) of the inclined wall plume with boundary 
conditions (20) and (21) subject to an integral equa- 
tion (22) of energy flux conservation. This integral 
equation of constraint makes a feature of the plume 
system. However, it is very difficult to integrate the 
set of system equations constrained by this integral 
equation, especially when the system equations are 
nonsimilar. One of the valuable contributions of this 
work is to introduce a finite-difference procedure for 
solving effectively the nonsimilar plume equations 
subject to such an integral equation. This numerical 
procedure is a modified version of Keller’s Box 
method which has been well described in ref. [ 121. The 
essential modification is that an additional iteration 
scheme was joined to the Keller’s numerical procedure 
to certify that the integral equation is satisfied at 
each 5,. 

As the first step of the numerical procedure, equa- 
tions (17)-( 19) are rewritten as a system of first-order 
equations which are then discreted by using central 
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difference equations. There results a set of nonlinear with uniform step size of A< = 0.01. The solution 
difference equations for the unknowns at 5, in terms along 5 = 0 is required to initiate the numerical pro- 
of their values at <,_, Next, these nonlinear difference cedure. This solution can be obtained from the 
equations were linearized by Newton’s method. numerical integration of the similar equations (23) 
Finally, the linearized equations and the appropriate and (24) subject to the boundary conditions of equa- 
boundary conditions are written in matrix-vector tions (20), (21) and the integral equation (22), by 
form and solved by the Keller’s block-elimination using the Runge-Kutta scheme in connection with the 
method [ 121. shooting technique. 

If equations (20) and (21) were used as boundary 
conditions, infinite numbers of solutions would be 
obtained. But only one of these solutions can satisfy 
the integral constraint equation (22). Therefore, we 
developed an iteration scheme to search for the unique 
solution that simultaneously satisfies equations (20), 
(21) and the integral equation (22). To incorporate 
the integral equation, we drop the boundary condition 
Q’([, 0) = 0 and replace it with a presupposed bound- 
ary condition. 

The step size of A~I and the edge of the boundary 
layer qa were varied from Aq = 0.02 and qY_ = 15 for 
small values of Pr to Aq = 0.1 and r~ ~ = 60 for large 
values of Pr. 

4. EXPERIMENTAL SETUP AND TEST SECTION 

@(LO) = H (27) 

where H is a guessed constant. The linearized differ- 
ence equations, along with the corresponding 
expressions for the boundary conditions (20), (21) 
and (27), can be solved conveniently and efficiently by 
using the block-elimination method to give a con- 
verged solution at [,. The obtained converged solution 
has to satisfy the constraints of equations (20) and 
(22). If not, an iteration algorithm 

A schematic of the test section (side view) is shown 
in Fig. 2. The test section is basically a flat plate of 
Bakelite (350 mm x 170 mm x 4 mm). A Nichrome 
wire of diameter 1 mm and length 170 mm was imbed- 
ded at the leading edge of the plate as a line heat 
source, which has been connected to a d.c. power 

SUPPlY. 
In this experiment, a double exposure holographic 

interferometry [13, 141 was employed. The schematic 
diagram of the optical setup for holographic inter- 
ferometry is shown in Fig. 3. A 20 mW He-Ne laser 
of 632.8 nm wavelength was used as the coherent and 
monochromatic light source. The interferograms were 
recorded on an Agfa-8E75 holographic plate. Details 
of holographic interferometry have been well 
described in the literature [13, 141 and will not be 
repeated here. 

WV = 0) 
ao:(ij = 0) 

(jH 
+&I)$ 

H rtl = H,- 
(WC;; O)J + (2) 

(28) 

is carried out to predict a new value of H for the next 
trial until the following criterion is satisfied : 

[Q;(~,O)]‘+(Z,- l)* < IO-’ (29) 

where the subscript i denotes the ith iteration, and 

The derivatives a&(r) = O)/aH and aI,jaH for the 
calculations of the iteration equation (28) are 
obtained by solving a system of linear difference equa- 
tions known as the variational equations [12]. The 
variational equations are derived by taking the deriva- 
tives of the difference equations and their boundary 
conditions with respect to H. These equations can also 
be efficiently solved by the Block-elimination method 
to give all the derivatives that are required for the 
computation of aQ:(q = O)/aH and aI,jaH. 

Once the unique converged solution at 5, has been 
obtained, which satisfies all the boundary conditions 
and the integral equation of constraint, the numerical 
procedure is repeated for <,,+ , This solution process 
is marched forward step-by-step from t = 0 to 5 = 1 

5. NUMERICAL RESULTS AND DISCUSSIONS 

5.1. Velocity profiles 

The longitudinal component of velocity is related 
to,f’(<, q) by the following equation 

(7) inclined p/ate (4) universal adaptor 
(2) line heat source (5) magnetic base 
(3) tilt platform (6) DC power suppty 

Fig, 2. Schematic of the test section of an inclined plate with 
a line heat source at the leading edge. 
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(1) He-NE lsser (7) Roosted gless 
(2) shutter (8) test section 
(3) beemsplitter (9) hologrephlc rewrder 
(4) mlrror (10) CCD camera 
(5) beem expemder (I I) monitor 
(6) spatial fitter (12) video grephic printer 

Fig. 3. Schematic diagram of the experimental apparatus. 

4T.Y) = ($wf’(4~ VI. 

This equation can be rewritten as 

(31) 

Typical profiles of the dimensionless velocity u/(a/x) 
over the dimensionless transverse coordinate (y/x) 
Ru’!~ = q</(acos rp)‘15 for some specified tilt angles are 
shown in Fig. 4 for Pr = 0.7 and Ra = 10’. It is shown 
that the longitudinal velocity decreases when the plate 
is tilted away from the vertical. This is due to the 
decrease of the component of buoyancy force with 
increasing tilt angle measured from the vertical. 

5.2. Temperature profiles 
Representative profiles of the dimensionless tem- 

perature 

over the 

80 

60 

40 
U 

a/x 
20 

0 2 8 10 

T-T, 
Ra15 _ @CL rl) 

T* - (aces cp)” 
(33) 

dimensionless transverse coordinate 

Fig. 4. Representative velocity profiles, Pr = 0.7, Ra = 105. 

Fig 

0.8 

0.6 

0.0 
0 2 4 

(y/xW 
l/6 

6 8 

Representative temperature profiles, Pr = 
Ra = IO’. 

0.7, 

(y/x)Ra’:’ are presented in Fig. 5 for Pr = 0.7 and 
Ra = 10’. This figure indicates clearly that the plume 
temperature increases as the tilt angle from the vertical 
increases due to a decrease of flow velocity. 

5.3. Wall temperature andfriction 
The variations of the dimensionless wall tem- 

perature /3(5,0) with 4 for fluids of Prandtl number 
from 0.001 to 1000 are presented in Fig. 6. To show 
clearly the variations of wall temperature with the 
longitudinal position and tilt angle, this figure has 
been recast as Fig. 7 for a typical case of a line heat 
source of Q = 2.42 J s-l, L = 17 cm in air for which 
all the physical properties are evaluated at the film 
temperature about 40°C. As expected, the wall tem- 
perature decreases with increasing longitudinal 
distance. This figure also reveals that the wall tem- 
perature (the plume temperature as well) decreased 
due to a more vigorous flow when the plate was tilted 
away from the horizontal. 

The effects of Prandtl number on the dimensionless 
wall temperature 6(5,0) and the dimensionless wall 
shear stress f”(<, 0) = r,[(pav/x’)l’] -’ are illustrated 
in Fig. 8 for 4 = 0.5 as a representative case. The 

2 1.2 

3 
G 

0.8 

0.4 
1,0.01,0.1,1,10,100,1000 

0 0.2 0.4 5 0.6 0.8 1 

Fig. 6. Variations of the dimensionless wall temperature 
0(& 0) with 5. 



120 Table 1. Comparison of the dimensionless wall temperature 
[CT,- T,)/T*]Ru”~ and wall friction ~J(pctv/x*)Ra”“] ’ for 

the vertical wall plume (t = 1) 

100 [(Tw-T,)iT*]Ra’:5 ?,[(pu\qx~)Ru”5] ’ 
=0*,30~,46~.60~,75~,90* Pr Present Ref. [4]t Present Ref. [4]t 

Y 0.001 3.1589 0.8207 
b3 

a0 
0.01 1.9934 1.9936 0.9775 0.9779 
0.1 1.2599 1.2600 1.0761 1.0763 
0.7 0.8771 0.8771 I.0899 1.0900 

60 1 0.8287 0.8340 1.0898 1.0950 
7 0.6710 1.1109 
10 0.6546 0.6547 1.1174 0.8796 

40 100 0.6041 0.6038 1.1535 1.1542 
1000 0.5888 1.1690 

0 20 40 60 a0 
X mm t Liburdy and Faeth (1975) [4]. 

Fig. 7. Variations of the wall temperature with the longi- 
tudinal distance and tilt angle. 

T,-T, 
O(l,O) = ~ 

I I I I I 
T* (oRa)“S 

and the wall friction can be expressed non- 

---- Asymptotes dimensionally as 

tw 
(pcW/x2)Rn3’5 

= Pf”([, 0). (35) 

O-l/ 

step from 4 = 0 to 4 = 1, the accurate results oft = 1 
ensure that the finite-difference solution are uniformly 

0.001 0.01 0.1 1 10 100 1000 valid over the entire range of the plate inclination 
Pr from the horizontal limit to the vertical limit. 

Fig. 8. Variations of H(t, 0) and.f”(<, 0) with Prandtl number, 
4 = 0.5. 5.5. Correlations qf wall temperature 

For convenience of application, we propose a sim- 
ple correlation equation of dimensionless wall tem- 
perature as follows : 

dimensionless wall temperature 0(<, 0) decreases 
slightly with increasing the Prandtl number over the 
range of 0.001 < Pr < 1000, whereas the wall shear [ii&J = [i&y+ [i&J C3@ 
stress decreases linearly with increasing Prandtl num- 
ber from Pr = 0.001 to 10. It approaches to the 

The wall temperature of a vertical wall plume, 

asymptotic value of Pr + cc as Pr > 10. 
Q( 1, 0), has been correlated [ 151 for any Prandtl num- 
ber between 0.001 and infinity as 

Q,(O) 
5.4. Comparison with literature 0% (0) 

c+Pr ‘:I 

Since no previous work on the inclined wall plume 1 1 C-J 
e(0) = t?,(O) ~~ 

l+Pr (37) 
is available, a direct comparison is not possible. How- 
ever, the accuracy of the numerical solutions can be 
verified by comparing the present results of 5 = 1 with where 0,(O) and 0,(O) represent the values of B(0) 
reported data of vertical wall plume. For the limiting for Pr -+O and Pr--,oo, respectively. With 

case of 5 = 1, the dimensionless wall temperature 
O([, 0) reduces to 

2248 H.-T. LIN et al. 

The values of the dimensionless wall temperature 
[(Tw- T,)/T*]~Gz”‘~ and those of the dimensionless 
wall friction z,[ (pav/x2)Ra3”] _ ’ calculated from the 
numerical data of [ = 1 are compared in Table 1 with 
the converted data of Liburdy and Faeth [4]. It is 
seen that the agreement between the two solutions is 
excellent. Since the set of nonsimilar equations for the 
inclined wall plume is integrated numerically step-by- 
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O,(O) = 0.7933, e,(O) = 0.5874 and c = 5, the 
maximum error of equation (37) is less than 3.5% 
when compared with the numerical data over the 
range of 0.001 < Pr < 00. 

The same form of correlation can be applied 
to predict the wall temperature of the horizontal 
wall plume, e(O,O), for any Pr. In this case, we 
choose Q,(O) = 0.6999 (Pr = O.OOl), e,(O) = 0.5268 
(Pr = 1000) and c = 6. The deviation of this cor- 
relation from the numerical results does not exceed 
2.8% for 0.001 6 Pr < 1000. 

We substitute the correlations of QO, 0) and Q( 1.0) 

into equation (36) to fit an appropriate value of 
exponent constant m by comparing with the numerical 
results of B(l, 0). With m = 6, the correlation equation 
has an error less than 4.1% over the entire range of 
plate inclination for 0.001 < Pr < 1000. 

6. EXPERIMENTAL RESULTS AND 

DISCUSSIONS 

The interference images of air temperature field of 
the inclined wall plumes for some specified tilt angles 
are shown in Fig. 9. Intuitively, one would expect a 

Fig. 9. Photographs of interferograms of the inclined wall plumes: (a) cp = 0” (vertical); (b) cp = 30”: 
(c) cp = 45’ ; (d) cp = 60’; (e) cp = 75‘ and (f) cp = 90’ (horizontal). 
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(a) 

Fig. 10. Photographs of interferograms of the inclined wall plumes adjacent to a block with a line heat 
source at the edge : (a) cp = 60” ; (b) cp = 90’. 

heat line source induces a vertical plume rather than 
a boundary layer flow adjacent to the inclined and 
horizontal plates. However, these photographs of 
holographic interferograms definitely show that there 
are stable boundary-layer flows along the plate. No 
separation and wake formation have been found. The 
plumes not only develop along a horizontal plate but 
also along a block, as is shown in Fig. 10. 

Experimental results of wall temperature are com- 
pared with numerical data in Fig. 11 for the case of 
cp = 30”. The theoretical wall temperatures have been 
calculated from equation (33), while the experimental 
temperatures were estimated from the fringe pattern 
of holographic interferograms presented in Fig. 9 by 
using the following equation modified from ref. [ 141: 

1 

-1 

(38) 

where N is the number of bright fringes in the inter- 
ferograms; I the wavelength of laser light; and K 
the Gladstone-Dale constant. All the constants and 
physical properties required for the calculation of 
theoretical and experimental wall temperatures have 
been listed in Table 2. Figure 11 clearly shows that 
the experimental and theoretical results have the same 
tendency of wall temperature decay. As expected, the 
wall temperatures estimated from holographic inter- 
ferometry are lower than the numerical solution due 
to the heat losses. In the theoretical analysis, we 
assume that all the thermal energy released from the 
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Table 2. Experiment conditions, some constants and physical properties used in this study 

Experiment conditions : 
Ambient temperature, T,, 
Pressure, P 
Wavelength of laser light, I 
Length of the line source, L 
Energy rate of the source, Q 

Constants : 
Gravitational acceleration, g 
Gladstone-Dale constant, K 
Ideal gas constant, R 
Molecular weight of air, M 

Physical properties (at 40°C) : 
Thermal diffusivity, x 
Thermal expansion coefficient, b 
Dynamic viscosity, v 
Density, p 
Heat capacity, cp 
Prandtl number, Pr 

Range of local Rayleigh number: 

23’C 
1 atm 
632.8 x 10e9 m 
1.7 x 10-l m 
2.42 J s-’ 

9.8 m SK* 
2.256 x 10m4 m3 kg-’ 
82.05 x 10e6 atm m3 mall’ K-’ 
28.8 x 10.’ kg mol-’ 

24.8 x lo-” m* s--’ 
3.19 x 10m3 K -’ 
19.123~10~~rn~s~’ 
1.092 kg me3 
1.014x 1O’J kg-’ K-’ 
0.71 
1 Oh 1 OX 

1201 , , , , , , I , 

01 ’ ’ ’ ’ ’ ’ ’ J 
0 10 20 30 40 50 60 70 60 

xm7n 
Fig. 11. Comparison of the theoretical and experimental 

results of wall temperature, cp = 30”. 

line source has been transferred totally to the bound- 
ary-layer flow. However, the downward curvature of 
the isotherms near the wall has revealed that heat 
flux from the fluid flow to the plate is considerable. 
Moreover, the interferograms also indicate that there 
are significant heat transfers to the fluid around the 
line source due to the large temperature difference 
between the line source and the ambient fluid. 

7. CONCLUSIONS 

In this paper, we have analyzed the inclined wall 
plumes along an adiabatic plate of arbitrary incli- 
nation. The following conclusions have been 
obtained : 

(1) By defining properly the dimensionless inde- 
pendent variables, we were able to obtain a set of 
nonsimilar equations which provides very accurate 
solutions for any tilt angle from the horizontal to the 
vertical over a very wide range of Prandtl number. 

(2) To solve the set of nonsimilar plume equations 

subject to an integral equation of flux conservation 
condition, we have developed a very effective numeri- 
cal scheme. The proposed numerical procedure can be 
applied to the analyses of other plumes. 

(3) A simple, but very accurate, correlation equa- 
tion of wall temperature have been developed for a 
plate with arbitrary inclination and for 0.001 d Pr 
< 1000. 

(4) The plume velocity increases, and the plume 
temperature decreases consequently, as the tilt angle 
away from the horizontal increases. 

(5) The holographic interferograms do confirm the 
physical reality of the horizontal and the inclined wall 
plumes. 
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